Adaptive algorithms for background estimation to detect moving objects in videos. (Algorithmes adaptatifs d'estimation du fond pour la détection des objets mobiles dans les séquences vidéos)
نویسنده
چکیده
Detecting foreground pixels is the rst step to detect objects of interestin videos. The objective of this thesis is to propose a new background estimationmethod to detect foreground pixels. The proposed method can adapt the estimatedbackground to various changes of environment (e.g. changes of illumination or ofcontextual objects).The proposed background estimation method consists of a new background sub-traction algorithm to detect foreground pixels, post-processing algorithms to removeshadow and highlight, and a controller to adapt the background subtraction algo-rithm to the current scene conditions.The new background subtraction algorithm takes into account the scene char-acteristics such as dynamic background (e.g. tree leave motion), displacement ofcontextual objects to improve the foreground detection results. It also proposes anew updating method to better adapt its background representation to the currentscene conditions.The algorithms to remove shadow and highlight employ new chromaticity andhomogeneity (texture) constraints which are robust to illumination changes. Theseconstraints are constructed based on the illumination model and the camera model.The controller has two adaptation methods for the background subtraction al-gorithm. The rst method is to selectively update the background representation ofthe background subtraction algorithm. With this updating method, the backgroundsubtraction algorithm can solve various problems such as managing stationary ob-jects, keeping track of objects when they stop moving. The second method is totune the parameter values of the background subtraction algorithm. To ful ll thesetwo tasks, the controller extensively uses the feedback from the classi cation taskand the information about the background subtraction algorithm and the scene.This method has been validated using the public database ETISEO and onehour video from the project GERHOME.
منابع مشابه
Architecture et Outils pour la Recherche d'Evénements dans les Séquences Vidéo
RÉSUMÉ. Le problème abordé ici concerne l’indexation en ligne de données multimédia par la recherche d’extraits pertinents qui peuvent aussi être des réponses à des requêtes spécifiques. Nos travaux se focalisent sur l’analyse de séquences vidéo afin d’y détecter des événements prédéfinis. La recherche de ces événements étant contextuelle, nous proposons une architecture et des outils générique...
متن کاملDetection and segmentation of moving objects in complex scenes
Detecting and segmenting moving objects in dynamic scenes is a hard but essential task in a large number of applications such as surveillance. Most existing methods only give good results in the case of persistent or slowly changing background, or if both the objects and the background can be characterized by simple parametric motions. This paper aims at detecting and segmenting foreground movi...
متن کاملOutils pour la recherche d'extraits pertinents dans les séquences vidéo. Applications aux retransmissions télévisées de matchs de football
Here we are concerned by on line multimedia data indexing by use of pertinent sample searching. Our work focuses on video sequence analysis in order to detect some predefined events. We propose an architecture and some tools, both generic, for building specific indexing systems. In particular, we deal with the following problems: data temporal segmentation, background and foreground separation,...
متن کاملProbabilistic Color-Based Multi-Object Tracking with Application to Team Sports
This paper addresses the problem of tracking multiple non rigid objects — such as humans — in videos. Firstly, it aims at showing how tracking can be improved with the help of background analysis. Background color modeling is used to optimise the target discrimination, to detect specific situations such as occlusions or clutter, and to perform selective adaptation of the target model. Backgroun...
متن کاملA method for detecting objects using Legendre transform
Résumé Dans cet article nous allons présenter une méthode de détection d’objets basée sur l’analyse multifractale. La détection d’objets est particulièrement difficile lorsque l’on ne connaît pas les caractéristiques des objets pouvant être présents dans l’image. Contrairement aux méthodes le plus souvent proposées, cette méthode est destinée à détecter des objets artificiels dans des images ph...
متن کامل